The First Multi-Dose Trial of a Human Anti-FGF23 (Fibroblast Growth Factor 23) Antibody (KRN23) in Adults with X-Linked Hypophosphatemia (XLH)

Erik A. Imel,1 Xiaoping Zhang, Mary D. Ruppe,3 Thomas J. Weber,4 Mark A. Klausner,2 Takahiro Ito,2 Maria Vergeire,2 Jeffrey Humphrey,2 Francis H. Glorieux,5 Anthony A. Portale, Karl Insogna,6 Munro Peacock,7 and Thomas O. Carpenter6

1Indiana University, Indianapolis, IN; 2Kyowa Hakko Kirin Pharma, Inc. Princeton, NJ; 3The Methodist Hospital, Houston, TX; 4Duke University, Durham, NC; 5Shriners Hospital for Children, Montreal, Canada; 6Yale University, New Haven, CT; 7University of California, San Francisco, CA;

2014 ENDO/ICE: Oral Session Number: OR43-1
Time: 9:30 AM - 11:00 AM; Tuesday, June 24, 2014, McCormick Place West, Chicago, IL
Disclosures

Dr. Erik Imel

• Kyowa Hakko Kirin Pharma, Inc.
 – Consultant (protocol design)
 – Research funds
X-Linked Hypophosphatemia (XLH)

- The most common form of hereditary rickets
- Chronic disease affecting both children and adults
- Bowing deformities of long bones begin in early childhood

Carpenter, Imel et al JBMR 2011; 26(7):1381-1388,
X-Linked Hypophosphatemia

- Excessive FGF23 mediates
 - ↓ Renal tubular phosphate reabsorption
 - ↓ Serum Pi
 - ↓ Activation of 1,25(OH)\(_2\)D
A recombinant human IgG1 monoclonal antibody that binds to FGF23 and inhibits FGF23 biologic activity
Serum Pi (inorganic phosphorus) after single SC dose of KRN23:

- At 0.3 – 1 mg/kg, increase in serum Pi > placebo; \(p < 0.05 \)
- Peak at day 8-15, persists ~6-8 weeks

KRN23-INT-001: The First Multi-Dose Trial of KRN23 in Adults with XLH

Design:
• Multi-center phase 1/2 open-label, dose-escalation trial

Subjects
• 28 adults (age ≥18 years) with clinical diagnosis of XLH and
 – Intact FGF23 ≥ 30 pg/mL
 – TmP/GFR < 2.0 mg/dL
 – Creatinine clearance ≥ 60 mL/min
 – Serum calcium < 10.8 mg/dL

* Protocol KRN23-INT-001; ClinicalTrials.gov ID: NCT01340482
KRN23 Dose and Dose Escalation

Dose escalation algorithm for doses 2, 3, and 4 based on serum Pi on day 26 after previous dose.
Outcome Measures

• Primary efficacy outcome: the proportion of subjects with post-dose serum Pi in ranges of:

 - 2.5 to ≤ 3.5 mg/dl
 - 3.5 to ≤ 4.5 mg/dl
 - > 4.5 mg/dl

• Secondary efficacy outcomes: Changes from baseline:
 - TmP/GFR
 - Serum Pi
 - 1,25(OH)₂D
 - Quality of life (SF-36v2 and WOMAC, see Poster MON210)
 - Pharmacokinetics and pharmacodynamics (see Poster MON0206)

• Safety outcomes:
 - adverse events, changes in safety laboratory measures, renal ultrasound, and cardiac CT
Baseline Demographic Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean ± SD</td>
<td>41.9 ± 13.83</td>
</tr>
<tr>
<td>Sex (male/female), n</td>
<td>9/19</td>
</tr>
<tr>
<td>Race (Caucasian/other), n</td>
<td>27/1</td>
</tr>
<tr>
<td>Weight (kg), median (range)</td>
<td>70.1 (46.4, 121.9)</td>
</tr>
<tr>
<td>Height (cm), mean ± SD (range)</td>
<td>150.3 ± 12.2 (121.9, 170.2)</td>
</tr>
</tbody>
</table>
Baseline Biochemistry Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact FGF23 (pg/mL), median (range)*</td>
<td>95 (36, 3520)</td>
<td>8 - 54</td>
</tr>
<tr>
<td>Serum Pi (mg/dL)</td>
<td>1.9 ± 0.3 (1.2, 2.8)</td>
<td>2.5 - 4.5</td>
</tr>
<tr>
<td>TmP/GFR (mg/dL)</td>
<td>1.6 ± 0.4 (0.8, 2.3)</td>
<td>2.5 - 4.2</td>
</tr>
<tr>
<td>Serum 1,25(OH)$_2$D (pg/mL)</td>
<td>36.6 ± 14.3 (10, 62)</td>
<td>15.9 - 55.6</td>
</tr>
<tr>
<td>Serum 25(OH)D, ng/mL</td>
<td>25.0 ± 9.1 (12, 44)</td>
<td>32 - 100</td>
</tr>
<tr>
<td>Serum total calcium (mg/dL)</td>
<td>9.1 ± 0.4 (8.5, 10.2)</td>
<td>8.5 - 10.3</td>
</tr>
<tr>
<td>Serum PTH (pg/mL), median (range)*</td>
<td>74 (38, 143)</td>
<td>10 - 65</td>
</tr>
<tr>
<td>BALP (µg/L)</td>
<td>28.3 ± 12.8 (8.2, 52.4)</td>
<td>M: 3.7 - 20.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F: 3.8-22.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Postmenopausal)</td>
</tr>
</tbody>
</table>

*Mean ± SD (range) are presented unless noted

Median is presented due to a skewed distribution
Primary Efficacy Results

- Serum Pi did not exceed 4.5 mg/dL in any subject
KRN23 Effects: TmP/GFR and Serum Pi

KRN23 dose; Mean + SD presented; * p < 0.05 compared to baseline
KRN23 Effect: 1,25(OH)$_2$D

KRN23 dose; Mean + SD presented; * p < 0.05 compared to baseline
KRN23 Effects: Calcium and PTH

KRN23 dose; Mean + SD presented; * p < 0.05 compared to baseline
Bone Turnover Markers

- P1NP increased during treatment
- Osteocalcin increased by the end of treatment
- BALP, and serum CTx appeared to increase with successive doses
- Changes in BALP, CTx and NTX/creatinine ratio were not statistically significant

✓ KRN23 dose; Mean + SD presented; * p < 0.05 compared to baseline
Safety Results

- Adverse events (AEs) reported in 25 (89.3%) out of 28 subjects
 - Nasopharyngitis (8 subjects, 28.6%)
 - Arthralgia (7 subjects, 25%)
 - Diarrhea (5 subjects, 17.9%; only 2 were treatment-related)
 - Back pain (5 subjects, 17.9%)
 - Restless leg syndrome (5 subjects, 17.9%)
 - Injection site urticaria (1 subject, discontinued)
 - Two subjects had severe AEs unrelated to study drug (subjects continued in study)
 - Severe myalgia
 - Severe back pain due to trauma

- No anti-KRN23 antibody was detected in any subjects
Calcification

• Renal ultrasound: Obtained in all subjects pre and post treatment
 – Baseline nephrocalcinosis in 5/28
 – No clinically significant post-treatment changes

• Cardiac CT: Obtained in 11 subjects pre and post treatment
 – Baseline: Coronary and aortic calcification scores 0 in all subjects
 – Post treatment: no change in 10/11
 • 1 subject had a post-treatment change
 – Coronary calcification score of 3 Agastron units
 – Aortic calcification score of 0 Agastron units
 – (For comparison, 1-10 is low risk, >400 is high risk)
Long term Extension Study (KRN23 INT-002)

• 22 subjects received KRN23 every 4 weeks for up to an additional 12 doses.
• Total treatment duration up to 16 months
• KRN23 continued to show favorable safety profile and sustained clinical effects.
• These results have been submitted to the American Society for Bone and Mineral Research Annual Meeting in Houston, TX in September.
Summary

• Four monthly injections of KRN23 in adults with XLH resulted in:
 – Increased TmP/GFR, serum Pi, and \(1,25(\text{OH})_2\text{D}\)
 – Most subjects increased serum Pi into normal range
 – Increased bone turnover markers
 – Improved quality of life scores [Poster MON-0210].

• KRN23 had a favorable safety profile

• Data supports ongoing investigation of KRN23 in both adult and pediatric clinical trials
Acknowledgements

• Dedicated participation of XLH patients
• Research Unit staffs at Yale, Indiana, Duke and University of Texas-Houston, University of California San Francisco, and Shriners Hospital for Children Montreal.

• Study coordinators at research sites:
 – Marian Hart
 – Elizabeth Olear
 – Margaret Stewart
 – Becky Sullivan
 – Connie Sullivan
 – Nathaniel Jacob Harrison
 – Monika Ruscheinsky
 – Michaela Durigova
 – Stephanie Lemp
 – Vinodhini Lakshman

• Sponsored by Kyowa Hakko Kirin Pharma, Inc.
Back-up Slides
KRN23 Improved Quality of Life

Mean PRO Scores at Baseline and Endpoint Among Completers

Table 1. SF-36v2 Scales

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>Physical Functioning</td>
</tr>
<tr>
<td>RP</td>
<td>Role Limitations due to Physical Health</td>
</tr>
<tr>
<td>BP</td>
<td>Bodily Pain</td>
</tr>
<tr>
<td>GH</td>
<td>General Health Perceptions</td>
</tr>
<tr>
<td>VT</td>
<td>Vitality</td>
</tr>
<tr>
<td>SF</td>
<td>Social Functioning</td>
</tr>
<tr>
<td>RE</td>
<td>Role Limitations due to Emotional Problems</td>
</tr>
<tr>
<td>MH</td>
<td>Mental Health</td>
</tr>
</tbody>
</table>

Ruppe MD, Zhang A, Imel EA, et al,
2014 ICE/ENDO Poster Number: MON-0210
KRN23 PK and PK-PD Relationship

Figure 1. Serum KRN23 concentration over time (A) and dose proportionality for KRN23 (B)

Figure 2. Linear correlation between AUECₙ for Serum Pi (B), TmP/GFR (D) 1,25(OH)₂D (E) with AUCₙ for KRN23 PK exposure. R is correlation coefficient.

Standard Treatment of XLH

• High dose oral phosphate salts and calcitriol
 – Addresses the consequences of FGF23 excess
 – Does not fix the underlying defect

• Limited by:
 – Poor compliance
 – Persistent bowing and short stature
 – Complications:
 • Hyperparathyroidism, nephrocalcinosis, & vitamin D intoxication.
CONSORT Diagram for the Study

Screening (n=31)
- Excluded (n=1)
 - Not meeting inclusion criteria

Enrolled (n=30)
- Withdrew consent prior to dosing (n=2)

Administered KRN23 (n=28)
- Withdrew after first dose due to pre-existing renal calcification (n=1)
- Withdrew after 3rd dose due to injection site urticaria (n=1)

Completed four doses (n=26)

Included in safety analysis (n=28)
Included in efficacy analysis (n=27)
Dose Algorithm

- KRN23 0.05 → 0.1 → 0.3 → 0.6 mg/kg
- Dose escalation based on Serum Pi day 26 post-dose
- If Serum Pi day 26 post-dose
 - ≤2.5 mg/dL, the dose was escalated 1 dose level
 - >2.5 mg/dL and ≤3.5 mg/dL, the previously administered dose level was repeated
 - >3.5 mg/dL, dosing was delayed and retested 28 days later.
 - If the repeat serum Pi was:
 - a) ≤2.5 mg/dL, the most recent dose was repeated
 - b) >2.5 mg/dL and ≤3.5 mg/dL, the dose was reduced by 1 dose level
 - c) >3.5 mg/dL, dosing withheld and re-evaluated 28 days later at the discretion of the Investigator and the Sponsor
KRN23 Doses Administered

- **Dose 1:** All 28 subjects received 0.05 mg/kg.
- **Dose 2:** 26 (96.3%) escalated to 0.1 mg/kg
 - 1 remained at 0.05 mg/kg (1 withdrew).
- **Dose 3:** 25 (92.6%) escalated to 0.3 mg/kg
 - 1 continued at 0.05 mg/kg
 - 1 continued at 0.1 mg/kg
- **Dose 4:** 16 (61.5%) escalated to 0.6 mg/kg
 - 8 continued at 0.3 mg/kg
 - 1 increased from 0.05 to 0.1 mg/kg
 - 1 increased from 0.1 to 0.3 mg/kg (1 withdrew)
- **No subject required dose reduction.**
Table 2: Proportion of Subjects With Post-dose Serum Pi by Categories

<table>
<thead>
<tr>
<th>Study Day</th>
<th>Post-dose Day*</th>
<th>Number (%) of Subjects</th>
<th>Categories of Serum Pi Levels (mg/dL)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤ 2.5</td>
<td>Phosphorus > 2.5 to ≤ 3.5</td>
<td>Phosphorus > 3.5 to ≤ 4.5</td>
<td>Phosphorus > 4.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing Interval 1, n=27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predose Day 0</td>
<td>Day 0</td>
<td>26 (96.3)</td>
<td>1 (3.7)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 7</td>
<td>Day 7</td>
<td>23 (85.2)</td>
<td>4 (14.8)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 26</td>
<td>Day 26</td>
<td>26 (96.3)</td>
<td>1 (3.7)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing Interval 2, n=27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predose Day 28</td>
<td>Day 0</td>
<td>26 (96.3)</td>
<td>1 (3.7)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 35</td>
<td>Day 7</td>
<td>17 (63.0)</td>
<td>10 (37.0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 54</td>
<td>Day 26</td>
<td>25 (92.6)</td>
<td>2 (7.4)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing Interval 3, n=27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predose Day 56*</td>
<td>Day 0</td>
<td>23 (92.0)</td>
<td>2 (8.0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 63</td>
<td>Day 7</td>
<td>7 (25.9)</td>
<td>20 (74.1)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 82</td>
<td>Day 26</td>
<td>19 (70.4)</td>
<td>8 (29.6)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosing Interval 4, n=26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predose Day 84*</td>
<td>Day 0</td>
<td>18 (75.0)</td>
<td>6 (25.0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 91</td>
<td>Day 7</td>
<td>3 (11.5)</td>
<td>19 (73.1)</td>
<td>4 (15.4)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 110</td>
<td>Day 26</td>
<td>14 (53.8)</td>
<td>12 (46.2)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 120</td>
<td>Day 36</td>
<td>22 (84.6)</td>
<td>4 (15.4)</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The visits where two serum Pi data were missing.

- Serum Pi did not exceed 4.5 mg/dL in any subject